应用回归分析
分享
课程详情
课程评价
spContent=应用回归分析是统计学的重要分支,是数据科学的基础方法,主要研究如何从数据出发,揭示变量间的统计联系。 本课程主要介绍经典回归分析的基本理论和实用方法,并体现了统计学与机器学习的有机结合。本课程以Python为教学语言,使学生具备应用专业知识解决实际问题的能力。
—— 课程团队
课程概述

1,课程内容全面,涵盖回归分析的基本内容,并与机器学习方法有机结合,体现了与时俱进的特点,主要内容包括:一元与多元线性回归的基本理论、回归模型的诊断与矫正、非线性与定性变量回归、求解分类问题的Logistic回归、变量选择、过拟合与正则化技术;

 

2,课程以Python为教学语言,详细讲解对实际数据进行回归建模与分析的基本步骤与注意事项,具有很强的可操作性;

 

3,注重案例实践。学生需上机完成一系列案例分析作业,并根据分析结果回答相应问题,才能得到案例实践部分的成绩;

 

4,在线平台提供单元测试、互动讨论、期终考试等一系列功能,帮助同学更好地掌握回归分析的基本理论和应用方法。

课程大纲
预备知识

1、本课程以概率论与数理统计为先修课程,同时应有较好的微积分与线性代数基础。

2、有过学习一门高级编程语言(如C、R、Matlab等)的经历即可,如有关于Python的基础知识更佳。

证书要求

为积极响应国家低碳环保政策, 2021年秋季学期开始,中国大学MOOC平台将取消纸质版的认证证书,仅提供电子版的认证证书服务,证书申请方式和流程不变。

 

电子版认证证书支持查询验证,可通过扫描证书上的二维码进行有效性查询,或者访问 http://www.icourse163.org/verify,通过证书编号进行查询。学生可在“个人中心-证书-查看证书”页面自行下载、打印电子版认证证书。

 

完成课程教学内容学习和考核,成绩达到课程考核标准的学生(每门课程的考核标准不同,详见课程内的评分标准),具备申请认证证书资格,可在证书申请开放期间(以申请页面显示的时间为准),完成在线付费申请。

 

认证证书申请注意事项:

1. 根据国家相关法律法规要求,认证证书申请时要求进行实名认证,请保证所提交的实名认证信息真实完整有效。

2. 完成实名认证并支付后,系统将自动生成并发送电子版认证证书。电子版认证证书生成后不支持退费。


参考资料

主要参考资料:

回归理论部分:   

1、何晓群,刘文卿:《应用回归分析》,中国人民大学出版社,2015年4月第4版。

2. 唐年胜、李会琼:《应用回归分析》,科学出版社,2014年1月第1版。

Python实践部分:

1.埃里克·马瑟斯(Eric Matthes):《Python编程——从入门到实践》,人民邮电出版社,2016年7月第1版。

2. 韦斯·麦金尼(Wes McKinney):《利用Python进行数据分析》,2018年8月,第2版。

常见问题

 

Q :  本课程使用哪个 Python版本?

A : 本课程使用Python 3。


Q : ‍使用哪个开发环境?

A:使用Anaconda作为开发环境,在Windows操作系统下进行学习,这是对初学者极为友好的学习环境。


Q : 有指定教材吗?

A :  没有。建议分别选择有关回归理论和Python操作的参考资料,结合使用。‍