高阶数学分析及其应用
分享
课程详情
课程评价
spContent=
—— 课程团队
课程概述

    在这门课中,我们将学习掌握四块内容:傅里叶级数、含参积分、曲线积分与曲面积分。

    1807 年,法国数学家傅里叶在求解热传导方程时发现,解函数可以由三角函数构成的级数形式表示,从而提出,函数可以展开成三角函数的无穷级数,这就是傅里叶级数。傅里叶级数在声学、光学、热力学、电气工程和量化分析等学科领域有非常广泛的应用,因为要研究周期性的运动就必须使用傅里叶级数。这部分内容是本课程的第一章。如果积分中带有了可以变化的参量,就成了含参量积分,其本质是一个函数,如何分析这类函数随着参量变化而变化的性质呢?这是课程第二章的内容。其中一类含参积分——欧拉积分,可极大简便积分运算,被大量运用于概率论与数理统计及分数阶微积分中。欧氏几何解决了平直、规则几何形体的面积和体积计算问题。但是,随着科技的发展,人们发现世界万物几乎没有平直的。人们不得不去处理曲边的平面图形、曲顶的立体,如圆、如球。那么,数学家们是如何克难的呢?以直代曲!也就是通过分割和近似等手段,把弯曲的微元用平直的替代。定积分如是,重积分亦如是,甚至还直接把积分定义到曲线和曲面上,建立曲线积分和曲面积分理论。到 20 世纪初,格拉斯曼,庞加莱和嘉当等人发展了外微分形式语言,把微分和积分这一对矛盾统一在斯托克斯型公式中,牛顿和莱布尼兹的微积分基本公式达到了空前的统一,近代数学在此基础上繁荣发展起来。这是课程第三章和第四章的内容。

   《高阶数学分析及其应用》正是学习这些数学分析系列课程中相较复杂艰深,却有更多应用与理论实践的知识。

    课程旨在培养学生严格的逻辑思维,让学生学习到优秀的数学思想,从而提高学生的理性思维素养,加强基础知识、基本理论、基本技能训练及培养学生独立思考能力。

课程大纲
证书要求

为积极响应国家低碳环保政策, 2021年秋季学期开始,中国大学MOOC平台将取消纸质版的认证证书,仅提供电子版的认证证书服务,证书申请方式和流程不变。

 

电子版认证证书支持查询验证,可通过扫描证书上的二维码进行有效性查询,或者访问 https://www.icourse163.org/verify,通过证书编号进行查询。学生可在“个人中心-证书-查看证书”页面自行下载、打印电子版认证证书。

 

完成课程教学内容学习和考核,成绩达到课程考核标准的学生(每门课程的考核标准不同,详见课程内的评分标准),具备申请认证证书资格,可在证书申请开放期间(以申请页面显示的时间为准),完成在线付费申请。

 

认证证书申请注意事项:

1. 根据国家相关法律法规要求,认证证书申请时要求进行实名认证,请保证所提交的实名认证信息真实完整有效。

2. 完成实名认证并支付后,系统将自动生成并发送电子版认证证书。电子版认证证书生成后不支持退费。