hi,小慕
课程

中国大学MOOC,为你提供一流的大学教育

hi,小mooc
集合论与图论(上)
第10次开课
开课时间: 2024年12月02日 ~ 2025年06月30日
学时安排: 4小时每周
进行至第19周,共31周 已有 1332 人参加
认证学习
认证成绩和证书
智能问答和解析
视频学习辅助
立即参加
课程详情
课程评价
spContent=《集合论与图论》是计算机大类/软件工程大类专业的一门专业基础课。本课程为后继的专业基础课及专业课提供必要的数学工具,为描述离散模型提供数学语言。该课程的设置主要是为了培养学生的抽象思维和逻辑推理能力,提高学生提出问题、分析问题和解决问题的能力,提高学生的数学修养及计算机科学素质。
《集合论与图论》是计算机大类/软件工程大类专业的一门专业基础课。本课程为后继的专业基础课及专业课提供必要的数学工具,为描述离散模型提供数学语言。该课程的设置主要是为了培养学生的抽象思维和逻辑推理能力,提高学生提出问题、分析问题和解决问题的能力,提高学生的数学修养及计算机科学素质。
—— 课程团队
课程概述

要想用计算机解决问题就要为它建立数学模型,即描述研究对象及对象与对象之间的联系,并通过事物之间的联系找出事物的运动规律。集合论与图论为此提供了强有力的描述工具与推理理论。

本课程的目标是通过理论学习,使学生正确地理解概念,正确地使用概念进行推理,养成一个好的思维习惯,理解理论与实践的关系。引导学生观察生活、社会和大自然,分析事物间的联系,建立系统的模型,提出和解决其中的复杂工程问题。


本课程主要包含二部分内容:集合论与图论。集合论是整个数学的基础,也是计算机科学的基础,计算机科学领域中的大多数基本概念和理论,几乎均采用集合论的有关术语来描述和论证,而图论的基本知识则将始终陪伴着每一个计算机工作者的职业生涯。


计算学科以抽象、理论、设计为其学科形态,以数学方法和系统方法为其学科方法,本课程的核心目标就是在抽象和理论的基础上提供数学方法,因此,本课程是整个专业的基础课程,是计算机专业最重要的课程之一。


《集合论与图论》(上)主要讲述集合论部分,《集合论与图论》(下)主要讲述图论部分。

授课目标

课程具体目标如下:


课程目标1:掌握集合论与图论的基本概念、基本原理、基本方法等基本知识,培养形式化、模型化的抽象思维能力,使学生能够利用集合论与图论的概念、理论与方法识别、表达计算相关的复杂工程问题,逐步学会为计算类复杂工程问题建立数学模型;


课程目标2:掌握直接证明法、反证法、数学归纳法、构造法等常用的证明方法,培养机械化、自动化的逻辑推理能力,使学生能够利用集合论与图论的概念、理论与方法并通过文献研究分析复杂工程问题,并能获得有效的结论,理解并逐步设计求解这些问题的算法基本思想;


课程目标3:掌握资料查阅方法,学会对课堂所学理论知识进行扩展,培养自学能力。


课程目标4:能够利用本课所学知识分析工程实际问题或针对某些应用背景探讨所学知识的局限性,培养学生的独立思考与创新能力。

课程大纲
集合及其概念
1.1 集合的概念
1.2 子集、集合的相等
1.3 集合的基本运算
1.4 余集、De Morgan公式
1.5 笛卡尔乘积
1.6 有穷集合的基数
映射
2.1 函数的一般概念-映射
2.2 抽屉原理
2.3 映射的一般性质
2.4 映射的合成
2.5 逆映射
2.6 置换
2.7 二元和n元运算
2.8 集合的特征函数
关系
3.1 关系的概念
3.2 关系的性质
3.3 关系的合成运算
3.4 关系的闭包
3.5 关系矩阵和关系图
3.6 等价关系与集合的划分
3.7 偏序关系与偏序集
无穷集合及其基数
4.1 可数集
4.2 连续统集
4.3 基数及其比较
4.4 康托-伯恩斯坦定理
展开全部
预备知识

工科数学分析、线性代数

参考资料

1.《离散数学引论》(修订版),王义和编著,哈尔滨工业大学出版,2016

2.《离散数学教程》,耿素云等编著,北京大学出版社,2015

3.《离散数学》,左孝凌等编著,上海科技文献出版社,2016

哈尔滨工业大学
1 位授课老师
姜守旭

姜守旭

教授

推荐课程

【DeepSeek适用】小白玩转AI大模型应用开发

林粒粒

196人参加

小白玩转 Python 数据分析

林粒粒

75人参加
下载
下载

下载App