hi,小慕
课程

中国大学MOOC,为你提供一流的大学教育

hi,小mooc
Calculus II
第6次开课
开课时间: 2025年02月24日 ~ 2025年06月29日
学时安排: 3-5小时每周
进行至第9周,共18周 已有 425 人参加
立即参加
课程详情
课程评价(8)
spContent=源自欧美教学风格,采用原版经典英文教材《Thomas' Calculus》(第12版),全英文授课方式,给学习者带来不一样的微积分学习体验,有兴趣的同学来挑战吧!Welcome!
源自欧美教学风格,采用原版经典英文教材《Thomas' Calculus》(第12版),全英文授课方式,给学习者带来不一样的微积分学习体验,有兴趣的同学来挑战吧!Welcome!
—— 课程团队
课程概述

微积分课程是理、工、管理等大学本科专业最重要的数学基础课程,为学生学习后续课程和进一步获取数学知识尊定基础,也是培养学生理性思维和创新能力的重要载体。

   2013年秋至今,电子科技大学为了格拉斯哥学院学生的教学与培养需要,开设了全英语微积分课程,选用的教材是英语原版经典教材《ThomasCalculus》(第12版)。授课方式为全英语教学,并按照欧美教学方式:注重以学生为中心、课内与课外相结合、教学与研究相结合、知识背景与理论基础相结合的教育创新模式。教师在课程中积极与学生互动,注重学生发现问题、解决问题能力的培养,同时讲解问题时留有充分的想象空间与练习环节,并附有丰富的参考资料和大量的例题习题。

    本课程系统地介绍了微积分的基础知识和基本方法,分为Calculus ICalculus II两个部分。Calculus I主要包含一元函数的极限理论,一元函数微分学和积分学,常微分方程;Calculus II主要包含多元函数微分学与积分学,向量场积分以及无穷级数理论。

授课目标

By the end of this course students will be able to:

·      apply calculus to parametric functions and vector-valued functions;

·      understand the inner and cross products of vectors, and apply them to lines and planes in space;

·      introduce the polar coordinates and the related equations;

·      calculate partial derivatives, total differential and high-order partial derivatives of multivariable functions;

·      find the derivative of implicit functions;

·      explain the concepts of directional derivative and gradient and calculate them in two and three dimensions;

·      apply partial derivatives to find the tangent plane and normal line of a surface;

·      locate extreme values of a multivariable function, both unconstrained and under given conditions, and apply the Lagrange multiplier method;

·      describe the meaning of double integrals (Cartesian coordinates and Polar coordinates) and evaluate them; similarly for triple integral (Cartesian coordinates, Polar coordinates and Spherical coordinates);

·      evaluate open and closed line integrals of vector functions, aware that the results depends on the path in general;

·      deetermine whether a line integral is independent of path;

·      apply Green’s theorem to integrals in the plane;

·      express given surfaces in an appropriate form and evaluate surface integrals over both open and closed surfaces;

·      apply the theorems of Green, Gauss and Stokes to line, surface and volume integrals and explain their significance in engineering;

·      explain what is meant by conservative, irrotational and solenoidal fields and explain their physical meaning

·      state what is meant by a sequence and series, find limits of sequence;

·      apply criteria for convergence of series with terms of the same sign or alternating sign; distinguish between absolute convergence and conditional convergence;

·      establish conditions for convergence of power series, other functional series and Taylor series;

·      derive Maclaurin expansions of elementary transcedental functions such as sin(x) and cos(x);

·      apply direct and indirect expansion methods of some simple functions to applications of power series in approximate calculations.

课程大纲

The First Week: 10 Infinite Sequences and Series

10.1 Definition of Sequence

10.2 Calculating the limit of Sequence I

10.3 Calculating the limit of Sequence II

10.4 Definition of Infinite Series

10.5 Convergence of Infinite Series

PPT-Chapter 10

Assignment 1

Answers of Assignment 1

The Second Week: 10 Infinite Sequences and Series

10.6 Integral Test I

10.7 Integral Test II

10.8 Comparison Test I

10.9 Comparison Test II

10.10 Ratio Test

10.11 Root Test

The Third Week: 10 Infinite Sequences and Series

10.12 Alternating Series I

10.13 Alternating Series II

10.14 Power Series I

10.15 Power Series II

10.16 Taylor Series

10.17 Convergence of Taylor Series

PPT-Chapter 10

Assignment 2

Assignment 3

Answers of Assignment 2

Assignment 4

Answers of Assignment 3

Unit Test-CH10

Answers of Assignment 4

The Fourth Week: 11 Parametric Equations and Polar Coordinates

11.1 Parametric Equations

11.2 Calculus of Parametric Curves

11.3 Polar Coordinates

11.4 Areas in Polar Coordinates

11.5 Length in Polar Coordinates

11.6 Conic Sections

PPT-Chapter 11

The Fifth Week: 12 Vectors and Geometry in Space

12.1 Three-Dimensional Coordinate and Vectors

12.2 Vector Products

12.3 Line and Plane in Space

PPT-Chapter 12

Assignment 5

Assignment 6

Answers of Assignment 5

Answers of Assignment 6

The Fifth Week: 13 Vector-Valued Functions

13.1 Curves in Space and Their Tangents

13.2 Integrals of Vector-valued Functions

13.3 Arc Length

PPT-Chapter 13

Unit Test-CH11, 12, 13

Assignment 7

Answers of Assignment 7

The Sixth Week: 14 Partial Derivatives

14.1 Functions of several variables

14.2 Limits and Continuity I

14.3 Limits and Continuity II

14.4 Partial Derivatives I

14.5 Partial Derivatives II

14.6 Partial Derivatives III

PPT-Chapter 14---Part I

The Seventh Week: 14 Partial Derivatives

14.7 The Chain Rule

14.8 Directional Derivatives I

14.9 Directional Derivatives II

14.10 Tangent Planes

PPT-Chapter 14---Part II

The Eighth Week: 14 Partial Derivatives

14.11 Extreme Values I

14.12 Extreme Values II

14.13 Lagrange Multipliers Method

Assignment 8

Unit Test-CH14

Assignment 9

Answers of Assignment 8

Answers of Assignment 9

The Ninth Week: 15 Multiple Integrals

15.1 Double Integrals over Rectangles I

15.2 Double Integrals over Rectangles II

15.3 Double Integrals over General Regions I

15.4 Double Integrals over General Regions II

15.5 Area by Double Integration

PPT-Chapter 15

The Tenth Week: 15 Multiple Integrals

15.6 Double Integrals in Polar Form I

15.7 Double Integrals in Polar Form II

15.8 Triple Integrals in Rectangular Coordinates

The Eleventh Week: 15 Multiple Integrals

15.9 Triple Integrals in Cylindrical Coordinates I

15.10 Triple Integrals in Cylindrical Coordinates II

15.11 Triple Integrals in Spherical Coordinates I

15.12 Triple Integrals in Spherical Coordinates II

Unit Test-CH15

The Twelfth Week: 16 Integrations of Vector Fields

16.1 Line Integrals

16.2 Line Integrals of Vector Fields I

16.3 Line Integrals of Vector Fields II

16.4 Line Integrals of Vector Fields III

PPT-Chapter 16---Part I

The Thirteenth Week: 16 Integrations of Vector Fields

16.5 Path Independence

16.6 Conservative Fields

16.7 Green’s Theorem in the Plane I

16.8 Green’s Theorem in the Plane II

PPT-Chapter 16---Part II

The Fourteenth Week: 16 Integrations of Vector Fields

16.9 Surface and Area I

16.10 Surface and Area II

16.11 Surface Integrals I

16.12 Surface Integrals II

16.13 Stokes' Theorem I

16.14 Stokes' Theorem II

16.15 Divergence Theorem

16.16 Unified Theory of Calculus

Unit Test-CH16

Former Exam papers

2020-2021-2_Final

2021-2022-2_Final

Cal II Mid-term_Sample

2022-2023-2_Final

展开全部
预备知识

Calculus I

证书要求

为积极响应国家低碳环保政策, 2021年秋季学期开始,中国大学MOOC平台将取消纸质版的认证证书,仅提供电子版的认证证书服务,证书申请方式和流程不变。

 

电子版认证证书支持查询验证,可通过扫描证书上的二维码进行有效性查询,或者访问 https://www.icourse163.org/verify,通过证书编号进行查询。学生可在“个人中心-证书-查看证书”页面自行下载、打印电子版认证证书。

 

完成课程教学内容学习和考核,成绩达到课程考核标准的学生(每门课程的考核标准不同,详见课程内的评分标准),具备申请认证证书资格,可在证书申请开放期间(以申请页面显示的时间为准),完成在线付费申请。

 

认证证书申请注意事项:

1. 根据国家相关法律法规要求,认证证书申请时要求进行实名认证,请保证所提交的实名认证信息真实完整有效。

2. 完成实名认证并支付后,系统将自动生成并发送电子版认证证书。电子版认证证书生成后不支持退费。


参考资料

《Thomas' Calculus》, G. B. Thomas, M. D. Weir and J. R. Hass, 12th edition, Pearson's company, 2010: https://www.mypearsonstore.com/bookstore/thomas-calculus-9780321587992

电子科技大学
1 位授课老师
费铭岗

费铭岗

教授

推荐课程

沟通心理学

裴秋宇

156874人参加

概率论与数理统计CAP

张帼奋

34549人参加

C语言程序设计

翁恺

892430人参加

高级语言程序设计(Python)

车万翔

129067人参加
下载
下载

下载App