认证学习
模式识别
分享
课程详情
课程评价
spContent=模式识别是上世纪六十年代初迅速发展起来的一门学科。其研究的成果在很多学科和技术领域中得到了广泛的应用,推动了人工智能技术,图像处理,信号处理,计算机视觉,多媒体技术等多种学科的融合与发展,扩大了计算机应用的领域。
—— 课程团队
课程概述

 模式识别是智能信息处理的核心内容之一,广泛应用于人工智能、机器人、系统控制、生物医学工程、军事目标识别等领域,对国民经济、国防建设和社会发展等发展产生了深远的影响。模式识别课程已成为信息与通信工程、自动控制工程、计算机工程等专业的重要课程。

模式识别指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学的重要组成部分。本课程从模式识别的基本概念入手,在特征选取的基础上,主要介绍统计模式识别,聚类分析,糊模式识别的基础理论和基本方法。课程主要涉及以线性分类器为核心的确定性统计分类,以及以贝叶斯分类器为核心的随机统计分类。通过本课程的学习,可掌握模式识别的基本理论和方法,为模式识别的工程应用奠定基础。


授课目标

 学习本门课程的目的是让学生通过系统的理论学习与相关实践,掌握模式识别理论与技术的基础知识、基本概念、基本原理、分析方法和典型应用,了解模式识别理论与技术的发展趋势,为深入学习专业知识和从事科研实践活动打下坚实的基础。

课程大纲
预备知识

 具有一定的数学基础,掌握了线性代数以及概率论与数理统计两门课程涉及到的知识。

参考资料

  

[1]杨杰 郭志强《模式识别及MATLAB实现》,电子工业出版社,2017年。

[2]郭志强 杨杰《模式识别及MATLAB实现--学习与实验指导》, 电子工业出版社,2017年。

[3]Christopher M. Bishop《Pattern Recognition and Machine Learning》springer, 2006年。

[4]西奥多里德斯《模式识别》(英文版 第4版),机械工业出版社,2009年。

[5]Richard O.Duda,PeterE.Hart,DavidG.Stork《模式识别》 (第2版), Wiley出版社,2001年。

[6]张学工《模式识别》(第3版),清华大学出版社,2010年。

[7]孙即祥《现代模式识别》,国防科技大学出版社,2001年。