机器学习
分享
课程详情
课程评价
spContent=Machine Learning(机器学习)是人工智能的核心,本课程用通俗和结合案例的方式,讲解机器学习算法,如经典算法:线性回归、逻辑回归、决策树等,也将讲解近几年才出现的如XGBoost、LightGBM等集成学习算法。通过本课程,你不仅得到理论基础的学习,而且获得那些利用机器学习解决问题的实用技术,包括机器学习工具的使用等等。
—— 课程团队
课程概述

机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。


这门课中,我们主要讲解经典的机器学习算法,如线性回归、逻辑回归、决策树等,也将讲解近几年才出现的如XGBoost、LightGBM等集成学习算法。此外,这门课还会讲解利用机器学习解决问题的实用技术,还包括Python、Scikit-learn工具的使用等等。


通过这门课,学习者将初步理解主流的机器学习算法,并且可以用机器学习技术解决现实生活中的问题。


与国内外很多非常优秀的机器学习课程或作品相比(如吴恩达机器学习课程、李航老师的统计学习方法、周志华老师的《机器学习》等),本课程对初学者来说,属于“雪中送炭”,而不是“锦上添花”,更适合初学者学习,主要解决初学者的三个问题:就是资料太多,难以取舍;理论性强,初学比较困难; 代码资料比较少。只要有本科三年级以上的数学知识,会一种编程语言,就可以掌握这门课程的绝大部分内容。

授课目标

1、掌握机器学习的基本问题定义、基本模型,对机器学习学科有概览性的认识。

2、掌握目前主流的机器学习算法和模型,并能够根据实际问题的需要选择并实现相应的算法。

3、编程完成机器学习典型应用实例,对机器学习工程编程有初步的训练


课程大纲
预备知识

数学基础:主要包括高等数学、线性代数、概率论与数理统计。

编程基础:已经掌握一种编程工具,会使用Python进行简单地编程。

证书要求

为积极响应国家低碳环保政策, 2021年秋季学期开始,中国大学MOOC平台将取消纸质版的认证证书,仅提供电子版的认证证书服务,证书申请方式和流程不变。

 

电子版认证证书支持查询验证,可通过扫描证书上的二维码进行有效性查询,或者访问 https://www.icourse163.org/verify,通过证书编号进行查询。学生可在“个人中心-证书-查看证书”页面自行下载、打印电子版认证证书。

 

完成课程教学内容学习和考核,成绩达到课程考核标准的学生(每门课程的考核标准不同,详见课程内的评分标准),具备申请认证证书资格,可在证书申请开放期间(以申请页面显示的时间为准),完成在线付费申请。

 

认证证书申请注意事项:

1. 根据国家相关法律法规要求,认证证书申请时要求进行实名认证,请保证所提交的实名认证信息真实完整有效。

2. 完成实名认证并支付后,系统将自动生成并发送电子版认证证书。电子版认证证书生成后不支持退费。


参考资料

参考书:

  1. Pattern Recognition and Machine Learning (模式识别与机器学习),Christopher M. Bishop, 2006

  2. 统计学习方法,李航,清华大学出版社,2019

  3. 机器学习, 周志华,清华大学出版社,2016

参考网络资源:

  1. "Machine Learning” by Andrew Ng, https://www.coursera.org/course/ml

  2.  Github:https://github.com/fengdu78/WZU-machine-learning-course