课程详情
课程评价
spContent=属性数据分析广泛应用于社会科学、行为科学、生物医学、公共卫生、市场营销、教育和农业科学等许多领域,本课程仅仅要求学生具有基础统计课程的知识,包括参数统计、假设检验、回归分析模型及方差分析模型,欢迎前来学习! 《属性数据分析》课程主要介绍用于分析属性数据的统计模型,是面向本科生开设的介绍属性数据分析引论的课程,主要覆盖属性数据的介绍,列联表分析,广义线性模型,并重点介绍 logistic 回归模型和 logit 模型等。 本课程教师讲授是主要的课堂教学方式,同时加入程序指导操作的环节,引导学生进行实践练习。在学期末要求学生提交 1 篇课程论文。课程采用双语教学的方式,课程课件为英文,中文讲述,有助于学生双语学习和紧跟研究前沿。
—— 课程团队
课程概述

  《属性数据分析》课程主要介绍用于分析属性数据的统计方法,是面向本科生开设的介绍属性数据分析引论的课程,主要覆盖属性数据的介绍,列联表分析,广义线性模型,并重点介绍 logistic 回归模型和 logit 模型等。


    本课程采用教师讲授、学生实践相结合的实验教学形式,努力形成教师和学生双向互动,理论学习结合实践运用,达到学以致用的结果。教师讲授是主要的课堂教学方式,同时加入程序指导操作的环节,引导学生进行实践练习。在学期末要求学生提交 1 篇课程论文。课程采用双语教学的方式,课程课件为英文,中文讲述,有助于学生双语学习和紧跟研究前沿。


    通过本课程的学习,学生可掌握与属性数据有关的统计学基础知识,如学会何处理、建模、分析属性数据,并学会通过用广义线性模型、logistic 回归模型等理论分析属性数据。通过课堂讲授让学生具有坚实的理论基础,通过对大量典型例子的介绍和分析, 使学生掌握基本方法,并在课后的习题练习中掌握使用软件分析属性数据的方法,具有思考和分析问题,并能实际解决问题的能力。    

    

授课目标

属性数据分析主要介绍用于分析属性数据的统计模型,是面向本科生开设的介绍属性数据分析引论的课程,主要覆盖属性数据的介绍,列联表分析,广义线性模型,并重点介绍 logistic 回归模型和 logit 模型等。


授课目标为:通过本课程的学习,学生可掌握与属性数据有关的统计学基础知识,如学会何处理、建模、分析属性数据,并学会通过用广义线性模型、logistic 回归模型等理论分析属性数据。通过课堂讲授让学生具有坚实的理论基础,通过对大量典型例子的介绍和分析, 使学生掌握基本方法,并在课后的习题练习中掌握使用软件分析属性数据的方法,具有思考和分析问题,并能实际解决问题的能力。

课程大纲
预备知识

要求学生具有基础统计课程的知识,如数理统计,回归分析等,不需要微积分、矩阵代数等高等数学的知识。

参考资料

选用教材 

An Introduction to Categorical Data Analysis. Second Edition. Alan Agresti (2007). John Wiley & Sons.

参考书目与文献 

(1) Analysis of Categorical Data. Agresti, A., New York: Wiley, 2002. 

(2) Generalized Linear Models. 2nd Ed. McCullagh P. and Nelder J., London: CRC Publishers, 1989. 

(3)《属性数据分析引论(第二版)》张淑梅 王睿 曾莉 译, 高等 教育出版社. 

(4)《实用多元统计方法与 SAS 系统》高惠璇,北京大学出版社. 

常见问题

Q : 课程的教材是什么?


A : 选用教材 

An Introduction to Categorical Data Analysis. Second Edition. Alan Agresti (2007). John Wiley & Sons.


参考书目与文献 

(1) Analysis of Categorical Data. Agresti, A., New York: Wiley, 2002. 

(2) Generalized Linear Models. 2nd Ed. McCullagh P. and Nelder J., London: CRC Publishers, 1989. 

(3)《属性数据分析引论(第二版)》张淑梅 王睿 曾莉 译, 高等 教育出版社. 

(4)《实用多元统计方法与 SAS 系统》高惠璇,北京大学出版社. 


Q : 课程的时间是什么时候?

A : 工作日 8:00 固定发布课程内容和更新


Q : 课程难度如何?

A :  属性数据分析主要介绍用于分析属性数据的统计模型,是面向本科生开设的介绍属性数据分析引论的课程,主要覆盖属性数据的介绍,列联表分析,广义线性模型,并重点介绍 logistic 回归模型和 logit 模型等。要求学生具有基础统计课程的知识,如数理统计,回归分析等,不需要微积分、矩阵代数等高等数学的知识。



Q : 有问题怎么办?

A : 课程配备多位老师和助教,大家有问题可以在留言板块中提问,老师和助教会及时回复和解答。



Q : 课程考核方式是怎样的?

A :  本课程考试用百分制计算,最终成绩为60分及以上为合格,85分及以上为优秀。最终成绩合格的同学可以根据实际需求申请认证证书,认证证书是收费的,费用为100/人。具体考试及计分方法如下:

1.     作业(30%

本人作业实际分数的平均。

备注:随堂练习不计入最终成绩。


2. 期中考试(35%

1)试题设置:共分为五道大题,每道大题有2~3个问题,共计100分,题型与单元作业题型设置类似,均为计算题和简答题。

2)期中考试开放时间为 2024年10月14日8:00 -- 1021日晚23:45,即在这一时段都内可以进行期中考试答题。

 

3. 课程论文(35%

本课程期末考试的形式是,要求在截止时间前提交一份课程论文

1)课程论文提交截止时间为:2024年11月18日23:45。2024年10月28日8:00起至2024年11月1823:45之间都可以提交课程论文(word, PDF文档)。

2)课程论文要求,格式和评分细则等请见课程发表内容中的《课程论文要求和细则》